IRFB/S/SL3507PbF
10
1
D = 0.50
0.1
0.01
0.20
0.10
0.05
0.02
0.01
τ J
τ J
τ 1
τ 1
R 1
R 1
τ 2
R 2
R 2
τ 2
τ C
τ
Ri (°C/W) τ i (sec)
0.2963 0.000504
0.4738 0.013890
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Ci= τ i / Ri
Ci i / Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Allowed avalanche Current vs avalanche
100
Duty Cycle = Single Pulse
0.01
pulsewidth, tav, assuming ? Tj = 150°C and
Tstart =25°C (Single Pulse)
10
1
0.05
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ?Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
300
250
200
150
100
50
0
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 58A
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T jmax . This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither T jmax nor I av (max)
is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P D (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I av = Allowable avalanche current.
7. ? T = Allowable rise in junction temperature, not to exceed T jmax (assumed as
25°C in Figure 14, 15).
t av = Average time in avalanche.
D = Duty cycle in avalanche = t av ·f
Z thJC (D, t av ) = Transient thermal resistance, see Figures 13)
25
50
75
100
125
150
175
P D (ave) = 1/2 ( 1.3·BV·I av ) = D T/ Z thJC
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
I av = 2 D T/ [1.3·BV·Z th ]
E AS (AR) = P D (ave) ·t av
5
相关PDF资料
IRFS450B MOSFET N-CH 500V 9.6A TO-3PF
IRFSL23N15D MOSFET N-CH 150V 23A TO-262
IRFSL23N20D MOSFET N-CH 200V 24A TO-262
IRFSL33N15DTRRP MOSFET N-CH 150V 33A TO-262-3
IRFSL33N15D MOSFET N-CH 150V 33A TO-262
IRFSL41N15D MOSFET N-CH 150V 41A TO-262
IRFSL59N10D MOSFET N-CH 100V 59A TO-262
IRFSL9N60ATRR MOSFET N-CH 600V 9.2A TO-262
相关代理商/技术参数
IRFS350A 功能描述:MOSFET 400V N-Channel A-FET RoHS:否 制造商:STMicroelectronics 晶体管极性:N-Channel 汲极/源极击穿电压:650 V 闸/源击穿电压:25 V 漏极连续电流:130 A 电阻汲极/源极 RDS(导通):0.014 Ohms 配置:Single 最大工作温度: 安装风格:Through Hole 封装 / 箱体:Max247 封装:Tube
IRFS351 制造商:未知厂家 制造商全称:未知厂家 功能描述:TRANSISTOR | MOSFET | N-CHANNEL | 350V V(BR)DSS | 10.4A I(D) | SOT-186VAR
IRFS3607PBF 功能描述:MOSFET 75V 1 N-CH HEXFET 9mOhms 56nC RoHS:否 制造商:STMicroelectronics 晶体管极性:N-Channel 汲极/源极击穿电压:650 V 闸/源击穿电压:25 V 漏极连续电流:130 A 电阻汲极/源极 RDS(导通):0.014 Ohms 配置:Single 最大工作温度: 安装风格:Through Hole 封装 / 箱体:Max247 封装:Tube
IRFS3607TRLPBF 功能描述:MOSFET MOSFT 75V 80A 9.0mOhm 56nC Qg RoHS:否 制造商:STMicroelectronics 晶体管极性:N-Channel 汲极/源极击穿电压:650 V 闸/源击穿电压:25 V 漏极连续电流:130 A 电阻汲极/源极 RDS(导通):0.014 Ohms 配置:Single 最大工作温度: 安装风格:Through Hole 封装 / 箱体:Max247 封装:Tube
IRFS3806PBF 功能描述:MOSFET 60V SINGLE N-CH 15.8mOhms 22nC RoHS:否 制造商:STMicroelectronics 晶体管极性:N-Channel 汲极/源极击穿电压:650 V 闸/源击穿电压:25 V 漏极连续电流:130 A 电阻汲极/源极 RDS(导通):0.014 Ohms 配置:Single 最大工作温度: 安装风格:Through Hole 封装 / 箱体:Max247 封装:Tube
IRFS3806TRLPBF 功能描述:MOSFET MOSFT 60V 43A 16.2mOhm 22nC Qg RoHS:否 制造商:STMicroelectronics 晶体管极性:N-Channel 汲极/源极击穿电压:650 V 闸/源击穿电压:25 V 漏极连续电流:130 A 电阻汲极/源极 RDS(导通):0.014 Ohms 配置:Single 最大工作温度: 安装风格:Through Hole 封装 / 箱体:Max247 封装:Tube
IRFS38N20D 制造商:International Rectifier 功能描述:Trans MOSFET N-CH 200V 38A 3-Pin(2+Tab) D2PAK
IRFS38N20DPBF 功能描述:MOSFET 200V 1 N-CH HEXFET 54mOhms 60nC RoHS:否 制造商:STMicroelectronics 晶体管极性:N-Channel 汲极/源极击穿电压:650 V 闸/源击穿电压:25 V 漏极连续电流:130 A 电阻汲极/源极 RDS(导通):0.014 Ohms 配置:Single 最大工作温度: 安装风格:Through Hole 封装 / 箱体:Max247 封装:Tube